A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry.

نویسندگان

  • Ilya M Terenin
  • Sergei E Dmitriev
  • Dmitri E Andreev
  • Elizabeth Royall
  • Graham J Belsham
  • Lisa O Roberts
  • Ivan N Shatsky
چکیده

Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5' untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with approximately 23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5'-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poliovirus proves IRES-istible in vivo.

The genetic basis for the attenuation of polio vaccines has been known since the 1980s. Changes in the internal ribosome entry site, within the 5' noncoding region of genomic RNAs, were presumed to reduce translation in certain target organs, leading to the conclusion that attenuation is mediated at the level of translation. A report in this issue of the JCI reveals that poliovirus tropism is, ...

متن کامل

Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA.

Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES tr...

متن کامل

Crystal structures of complexes containing domains from two viral internal ribosome entry site (IRES) RNAs bound to the 70S ribosome.

Internal ribosome entry site (IRES) RNAs are elements of viral or cellular mRNAs that bypass steps of canonical eukaryotic cap-dependent translation initiation. Understanding of the structural basis of IRES mechanisms is limited, partially due to a lack of high-resolution structures of IRES RNAs bound to their cellular targets. Prompted by the universal phylogenetic conservation of the ribosoma...

متن کامل

Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit

Binding of the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA to the eIF-free 40S ribosomal subunit is the first step of initiation of translation of the viral RNA. Hairpins IIId and IIIe comprising 253-302 nt of the IRES are known to be essential for binding to the 40S subunit. Here we have examined the molecular environment of the HCV IRES in its binary complex with th...

متن کامل

A peptide derived from RNA recognition motif 2 of human la protein binds to hepatitis C virus internal ribosome entry site, prevents ribosomal assembly, and inhibits internal initiation of translation.

Human La protein is known to interact with hepatitis C virus (HCV) internal ribosome entry site (IRES) and stimulate translation. Previously, we demonstrated that mutations within HCV SL IV lead to reduced binding to La-RNA recognition motif 2 (RRM2) and drastically affect HCV IRES-mediated translation. Also, the binding of La protein to SL IV of HCV IRES was shown to impart conformational alte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 17  شماره 

صفحات  -

تاریخ انتشار 2005